segunda-feira, 30 de abril de 2012
VIDEO INTEIRO DO PROJETO ICARO - CRAM
Pessoal não deixem de acessar o site da CRAM e assistir a cobertura completa de filmagem do projeto ICARO, projeto esse em parceria com o IPMET, CPMET, vale a pena assistir, Julio RCP
quarta-feira, 18 de abril de 2012
DIA INTERNACIONAL DO RADIOAMADOR
O RADIO CLUBE DE PELOTAS AVISA QUE NÃO DEVEMOS ESQUECER QUE DIA 18 DE ABRIL COMEMORAMOS O DIA INTERNACIONAL DO RADIOAMADOR JUNTAMENTE COM O ANIVERSÁRIO DE FUNDAÇÃO DA
UNIÃO INTERNACIONAL DE RADIOAMADORES A ( I.A.R.U. )
UNIÃO INTERNACIONAL DE RADIOAMADORES A ( I.A.R.U. )
terça-feira, 17 de abril de 2012
PROJETO ÍCARO
ESTE PROJETO É INTERESSANTÍSSIMO, APRONTEM SEUS RECEPTORES E APONTEM SUAS ANTENAS, QUEM SABE CAPTAMOS ALGUM SINAL, BOA ESCUTA.
Projeto ÍCARO - Introdução ao Conhecimento da Atmosfera pelos RadiOamadores
Resumo:
Um balão meteorológico será lançado a partir do Instituto de Pesquisas
Meteorológicas da UNESP (campus de Bauru) e transportará, até a altitude de
aproximadamente 25km, uma radiossonda e um beacon em fonia (transmissor de
voz), com o indicativo especial ZW2WEB. A radiossonda transmitirá para uma
estação receptora de dados meteorológicos os valores de pressão, temperatura,
umidade, velocidade, direção do vento e posicionamento. Em terra, uma estação
radioamadora fará o uplink dessas informações que serão retransmitidas pelo
beacon em fonia. Qualquer estação radioamadora ou de radioescuta, munida de um
receptor em VHF na frequência de 144,270 MHz será capaz de receber as
informações e montar um log com os dados meteorológicos e, com isso, será
capaz de identificar duas camadas da atmosfera e a transição entre elas:
troposfera, tropopausa e estratosfera.
Objetivos principais:
Apesar da transmissão de dados via fonia não ser eficiente, é o modo mais
simples para a disseminação de informações. O projeto Ícaro visa incentivar o
conhecimento da atmosfera, com a disseminação dos dados do voo e outras
informações, do modo mais abrangente, visando integrar e motivar a comunidade
radioamadora a buscar novos conhecimentos e a realizar novos experimentos.
Execução do Experimento:
O local será a partir do Instituto de Pesquisas Meteorológicas – IPMet, da
UNESP, campus de Bauru e está previsto para ser realizado no dia 28/04/2012 a
partir das 16h (19h GMT).
O lançamento do balão está sujeito às condições meteorológicas que devem ser
satisfeitas: sem chuva e com vento na superfície abaixo de 5 m/s. O balão será
inflado com hidrogênio e a taxa de subida deverá ser entre 4 a 5 m/s
(aproximadamente 1000 pés/minuto).
Nos dias que antecederem o lançamento, os meteorologistas do IPMet farão um
acompanhamento especial do desenvolvimento das condições meteorológicas e,
caso haja a impossibilidade de lançamento no dia previsto, uma nova data será
agendada. Caso a previsão meteorológica seja favorável ao lançamento, será
realizada uma reunião a aproximadamente 6 horas antes do horário previsto do
lançamento para uma melhor avaliação das condições meteorológicas, com uma
especial atenção à previsão dos ventos de superfície.
Satisfeitas as condições meteorológicas, o horário exato do lançamento será
determinado mediante coordenação com a autoridade de controle aéreo local (APP
Bauru) e com acompanhamento pelo CINDACTA II durante todo o voo.
Caso haja algum imprevisto de ordem meteorológico ou técnico, o lançamento
poderá ser adiado para mais tarde ou para o dia seguinte. No caso de ainda não
ser possível o lançamento, uma nova data será definida.
Além da radiossonda e do beacon, o vôo contará com paraquedas, refletor de
radar passivo e sinalização luminosa (flash de xenônio).
Participação no experimento:
A participação no experimento Ícaro será homologada com um certificado de
participação (QSL) comemorativo a ser enviado a todas as estações de
radioamadores ou radioescutas que reportarem o recebimento de, pelo menos, uma
das transmissões feitas pela estação ZW2WEB, com o envio das seguintes
informações mínimas:
-Local da estação receptora (QTH);
-Hora (QTR);
-Tipo de rádio e antena utilizados
-Reportagem do sinal (intensidade e qualidade da recepção)
-Informação recebida (Localização do balão, pressão, temperatura, umidade,
etc)
É interessante, se possível, que a estação participante reporte quando começou
a receber os dados do experimento e quando parou de receber para se ter uma
ideia do alcance do beacon em função da altitude do balão.
As informações poderão ser enviadas via correio para:
IPMet – UNESP
A/C: Projeto Ícaro
Caixa Postal: 281
Bauru – SP
CEP: 17015-970
Ou via e-mail para:
pu2tmt@gmail.com (Irineu)
Serviço:
Mais informações sobre o vôo, sobre a atmosfera e todos os dados os dados do
experimento serão disponibilizados em um link dedicado ao projeto Ícaro na
página do IPMet:
http://www.ipmet.unesp..br
http://www.ipmet.unesp.br/icaro (em implantação)
Prefixo Especial : ZW2WEB
Frequência: 144,270MHz
Data de lançamento prevista: 28/04/2012 após às 16:00h
Local: Instituto de Pesquisas Meteorológicas – IPMet / Câmpus da UNESP de
Bauru
Duração estimada do vôo: 180 minutos (1h30)
Responsáveis:
Coordenação científica, lançamento, resgate e coordenação com controle aéreo:
Demilson Quintão (PY2UEP)
Coordenação Radioamadorística: Edson Wander Pereira (PU2MWD)
Execução do experimento (beacon e antenas): William Schauff (PY2GN)
Fonia (Beacon) e Integração com Grupos Escoteiros : Irineu (PU2TMT)
Divulgação na Mídia Radioamadorística: Adinei Brochi (PY2ADN)
Projeto ÍCARO - Introdução ao Conhecimento da Atmosfera pelos RadiOamadores
Resumo:
Um balão meteorológico será lançado a partir do Instituto de Pesquisas
Meteorológicas da UNESP (campus de Bauru) e transportará, até a altitude de
aproximadamente 25km, uma radiossonda e um beacon em fonia (transmissor de
voz), com o indicativo especial ZW2WEB. A radiossonda transmitirá para uma
estação receptora de dados meteorológicos os valores de pressão, temperatura,
umidade, velocidade, direção do vento e posicionamento. Em terra, uma estação
radioamadora fará o uplink dessas informações que serão retransmitidas pelo
beacon em fonia. Qualquer estação radioamadora ou de radioescuta, munida de um
receptor em VHF na frequência de 144,270 MHz será capaz de receber as
informações e montar um log com os dados meteorológicos e, com isso, será
capaz de identificar duas camadas da atmosfera e a transição entre elas:
troposfera, tropopausa e estratosfera.
Objetivos principais:
Apesar da transmissão de dados via fonia não ser eficiente, é o modo mais
simples para a disseminação de informações. O projeto Ícaro visa incentivar o
conhecimento da atmosfera, com a disseminação dos dados do voo e outras
informações, do modo mais abrangente, visando integrar e motivar a comunidade
radioamadora a buscar novos conhecimentos e a realizar novos experimentos.
Execução do Experimento:
O local será a partir do Instituto de Pesquisas Meteorológicas – IPMet, da
UNESP, campus de Bauru e está previsto para ser realizado no dia 28/04/2012 a
partir das 16h (19h GMT).
O lançamento do balão está sujeito às condições meteorológicas que devem ser
satisfeitas: sem chuva e com vento na superfície abaixo de 5 m/s. O balão será
inflado com hidrogênio e a taxa de subida deverá ser entre 4 a 5 m/s
(aproximadamente 1000 pés/minuto).
Nos dias que antecederem o lançamento, os meteorologistas do IPMet farão um
acompanhamento especial do desenvolvimento das condições meteorológicas e,
caso haja a impossibilidade de lançamento no dia previsto, uma nova data será
agendada. Caso a previsão meteorológica seja favorável ao lançamento, será
realizada uma reunião a aproximadamente 6 horas antes do horário previsto do
lançamento para uma melhor avaliação das condições meteorológicas, com uma
especial atenção à previsão dos ventos de superfície.
Satisfeitas as condições meteorológicas, o horário exato do lançamento será
determinado mediante coordenação com a autoridade de controle aéreo local (APP
Bauru) e com acompanhamento pelo CINDACTA II durante todo o voo.
Caso haja algum imprevisto de ordem meteorológico ou técnico, o lançamento
poderá ser adiado para mais tarde ou para o dia seguinte. No caso de ainda não
ser possível o lançamento, uma nova data será definida.
Além da radiossonda e do beacon, o vôo contará com paraquedas, refletor de
radar passivo e sinalização luminosa (flash de xenônio).
Participação no experimento:
A participação no experimento Ícaro será homologada com um certificado de
participação (QSL) comemorativo a ser enviado a todas as estações de
radioamadores ou radioescutas que reportarem o recebimento de, pelo menos, uma
das transmissões feitas pela estação ZW2WEB, com o envio das seguintes
informações mínimas:
-Local da estação receptora (QTH);
-Hora (QTR);
-Tipo de rádio e antena utilizados
-Reportagem do sinal (intensidade e qualidade da recepção)
-Informação recebida (Localização do balão, pressão, temperatura, umidade,
etc)
É interessante, se possível, que a estação participante reporte quando começou
a receber os dados do experimento e quando parou de receber para se ter uma
ideia do alcance do beacon em função da altitude do balão.
As informações poderão ser enviadas via correio para:
IPMet – UNESP
A/C: Projeto Ícaro
Caixa Postal: 281
Bauru – SP
CEP: 17015-970
Ou via e-mail para:
pu2tmt@gmail.com (Irineu)
Serviço:
Mais informações sobre o vôo, sobre a atmosfera e todos os dados os dados do
experimento serão disponibilizados em um link dedicado ao projeto Ícaro na
página do IPMet:
http://www.ipmet.unesp..br
http://www.ipmet.unesp.br/icaro (em implantação)
Prefixo Especial : ZW2WEB
Frequência: 144,270MHz
Data de lançamento prevista: 28/04/2012 após às 16:00h
Local: Instituto de Pesquisas Meteorológicas – IPMet / Câmpus da UNESP de
Bauru
Duração estimada do vôo: 180 minutos (1h30)
Responsáveis:
Coordenação científica, lançamento, resgate e coordenação com controle aéreo:
Demilson Quintão (PY2UEP)
Coordenação Radioamadorística: Edson Wander Pereira (PU2MWD)
Execução do experimento (beacon e antenas): William Schauff (PY2GN)
Fonia (Beacon) e Integração com Grupos Escoteiros : Irineu (PU2TMT)
Divulgação na Mídia Radioamadorística: Adinei Brochi (PY2ADN)
sexta-feira, 13 de abril de 2012
CONCURSO INTERCONTINENTAL DE TELEGRAFIA
NÃO DEIXE DE PARTICIPAR DO:
CQMM DX CONTEST
CQ MANCHESTER MINEIRA DX CONTEST
REGULAMENTO NO ENDEREÇO: www.cqmmdx.com/wp-content/files/CQMM-2012-Portugues.pdf
DIAS 21 E 22 DE ABRIL - PRÓXIMO SÁBADO E DOMINGO
******************* YURI GAGARIN CONTESTE *********************
SOMENTE TELEGRAFIA
TEXTO EXTRAIDO DO QST RÚSSIA ( http://gc.qst.ru/en/section/32 )
The contest is dedicated to the memory of Yuri Gagarin, who realized the first human flight to space, on April 12, 1961.
1. Date: from 21.00 UTC on April 14th till 21.00 UTC on April 15th, 2012.
Stations of categories A, B and D may operate 20 of the 24 hours.
Off times must be a minimum of 60 minutes during which no QSO is logged.
2. Bands: 1.8, 3.5, 7.0, 14, 21, 28 MHz and radio amateur satellites.
3. Modes: CW only.
4. Contest Call: <CQ GC> (CQ Gagarin Cup).
5. Categories:
A Single operator - Single band.
B Single operator - Multi bands.
C Multi operators - Multi bands, single transmitter.
D SWL - Multi bands.
During the contest:
All multi-band categories may also utilize radio amateur satellites. These QSOs are counted as an additional band.
Categorie C must remain on the same band for at least 5 minutes after the first QSO has been made.
Categories A, B and C can make only one QSO with the same station on that band.
6. Exchange: RST and ITU zone number.
7. QSO points:
QSO with own <P-150-C> country count 2 points.
QSO with a different <P-150-C> country in the same continent - 3 points.
QSO with a different continent - 4 points.
Satellite`s QSO - 100 poins.
QSO points on:
1.8 MHz and 3.5MHz multiplied by 3;
7 MHz - 2;
14, 21 and 28 MHz - 1.
For SWL: Complete logging of one station only the callsign of the second station count 1 point. Complete logging of both sides of a QSO - 3 points. The same callsign may be logged only 1 time on each band.
8. Multipliers: each different ITU zone, QSO with radioamateurs stations: R3K, RS3A, RT3F and UP7Z worked on each band gives 1 point for multiplier. SWLs have no multipliers.
9. Final score:
The total number of QSO points on all bands times the total number of multipliers worked on all bands.
10. Awards: The Special trophy will be awarded to the winner in the B & C categories.
Different kind of medals will be awarded to the world's top three scoring stations in the A, B, C and D categories.
Certificates will be awarded to top three and each country's winner in each category.
Certificates will be awarded to all the Contest participants who log not less than 250 QSOs or 250 SWLs.
11. Logs:
Electronic logs are to be sent via e-mail as the enclosure to the letter. File format - text of the operator's contest program but Cabrillo format will be much appreciated.
In the field "subject" of your e-mail letter it is necessary to mention your callsign and category (for example - ra3aaa B). In the text of the letter it is necessary to show your final score
calculation, rig and antennas data, as well as your comments and wishes.
E-mail address: gc12(at)bk(dot)ru
The final date of logs sending - May 15, 2012.
The results of <Gagarin Cup> are to the http://gc.qst.ru and http://www.qrz.ru/contest/
SOMENTE TELEGRAFIA
TEXTO EXTRAIDO DO QST RÚSSIA ( http://gc.qst.ru/en/section/32 )
Contest Rules |
The Yuri Gagarin International DX Contest 2012
The contest is dedicated to the memory of Yuri Gagarin, who realized the first human flight to space, on April 12, 1961.
RULES
1. Date: from 21.00 UTC on April 14th till 21.00 UTC on April 15th, 2012.
Stations of categories A, B and D may operate 20 of the 24 hours.
Off times must be a minimum of 60 minutes during which no QSO is logged.
2. Bands: 1.8, 3.5, 7.0, 14, 21, 28 MHz and radio amateur satellites.
3. Modes: CW only.
4. Contest Call: <CQ GC> (CQ Gagarin Cup).
5. Categories:
A Single operator - Single band.
B Single operator - Multi bands.
C Multi operators - Multi bands, single transmitter.
D SWL - Multi bands.
During the contest:
All multi-band categories may also utilize radio amateur satellites. These QSOs are counted as an additional band.
Categorie C must remain on the same band for at least 5 minutes after the first QSO has been made.
Categories A, B and C can make only one QSO with the same station on that band.
6. Exchange: RST and ITU zone number.
7. QSO points:
QSO with own <P-150-C> country count 2 points.
QSO with a different <P-150-C> country in the same continent - 3 points.
QSO with a different continent - 4 points.
Satellite`s QSO - 100 poins.
QSO points on:
1.8 MHz and 3.5MHz multiplied by 3;
7 MHz - 2;
14, 21 and 28 MHz - 1.
For SWL: Complete logging of one station only the callsign of the second station count 1 point. Complete logging of both sides of a QSO - 3 points. The same callsign may be logged only 1 time on each band.
8. Multipliers: each different ITU zone, QSO with radioamateurs stations: R3K, RS3A, RT3F and UP7Z worked on each band gives 1 point for multiplier. SWLs have no multipliers.
9. Final score:
The total number of QSO points on all bands times the total number of multipliers worked on all bands.
10. Awards: The Special trophy will be awarded to the winner in the B & C categories.
Different kind of medals will be awarded to the world's top three scoring stations in the A, B, C and D categories.
Certificates will be awarded to top three and each country's winner in each category.
Certificates will be awarded to all the Contest participants who log not less than 250 QSOs or 250 SWLs.
11. Logs:
Electronic logs are to be sent via e-mail as the enclosure to the letter. File format - text of the operator's contest program but Cabrillo format will be much appreciated.
In the field "subject" of your e-mail letter it is necessary to mention your callsign and category (for example - ra3aaa B). In the text of the letter it is necessary to show your final score
calculation, rig and antennas data, as well as your comments and wishes.
E-mail address: gc12(at)bk(dot)ru
The final date of logs sending - May 15, 2012.
The results of <Gagarin Cup> are to the http://gc.qst.ru and http://www.qrz.ru/contest/
terça-feira, 10 de abril de 2012
Este artigo foi copiado na integra, retirado de " microwaves101.com " no qual cita o feito de Landell de Moura por sua contribuição a sociedade.
Microwave Hall of Fame
If you want to nominate a Microwave God to this humble hall of fame, send info to Microwaves101.com and you will win a free pen knife if he (or perhaps she?) makes the cut. There is room for an unlimited number of inductees, so start shooting them in. No microwave managers please!
On this page, you'll find the classics--most of these guys you should know for their contributions to electrical engineering as a whole. History-makers around WWII have their own page, and modern-day geniuses now have a page to call their own. Check them all out!
By the 1880s, electrification of the world had begun, first for lighting, and just as important, for motors. In the United States, a huge rift developed between supporters of direct current systems (being deployed by Edison), and supporters of alternating current (to be deployed by Westinghouse). Eventually, Nikola Tesla proved to the world that alternating current and his polyphase system of generation, distribution and power delivery using the induction motor were the answer to long distance, reliable electrical distribution. New York City was wired with direct current for a time, and unreliable DC trolleys and their sparking commutators gave the Brooklyn Trolley Dodgers baseball team (today's L. A. Dodgers) their name. During this time period, "Wizard of Menlo Park" Thomas Edison performed despicable acts on neighborhood pets to show the dangers of alternating current, and eventually arranged for the first prisoner execution on August 6, 1890, using (of course) alternating current. Convicted killer William Kemmler took eight minutes to die, even though the procedure had been tested on a horse the day before. To see the botched execution from the movie Green Mile, click here (fair warning, this is a truly ugly event). The late 1800s/early 1900s were certainly the most interesting of modern times for technology. You can read about this time period in books such as Tesla, Man out of Time, by Margaret Cheney.
Edison might be spinning in his grave these days, as high-voltage DC transmission line haves made a comeback of sorts. Once the problem of up/down converting is solved (which is an expensive proposition), DC has two advantages over AC: lower peak voltage for the same power (less opportunities to arc), and the skin depth at DC is infinite. Every gram of copper in a DC transmission line is used to move power equally, this is not true for AC. Therefor DC has a loss advantage which can be appreciable for large diameter lines. Here's some info on HVDC power transmission lines.
In another experiment, Hertz used a coax line to show that electromagnetic waves propagated with a finite velocity, and he discovered basic transmission line effects such as the existence of nodes in a standing wave pattern a quarter wavelength from an open circuit and a half wavelength from a short circuit. He then went on to develop cylindrical parabolic reflectors for directional antennas, as well as a number of other radio frequency (RF) and microwave devices and techniques.
Marconi faced resistance, resentment and reprisals from many well-known scientists of the era, and almost lost his personal fortune. His high-tech startup of the '90s, The Wireless Telegraph & Signal Company (a U.K. company) was soon renamed Marconi's Wireless Telegraph Company. This business began by installing company-owned and operated wireless communications onto ships to communicate with huge installations on key coastlines, while the founder pursued ground communications across the Atlantic. It is ironic that Marconi's methods of trial and error for tuning his equipment would have taken much longer if not for access to transatlantic cables owned by the telegraph companies his technology would compete with. Marconi received the Nobel physics prize of 1909 for his work, shared with German Ferdinand Braun. By 1911, "Marconigrams" had helped capture a famous murderer and in 1912 enabled the rescue of Titanic survivors. Marconi was the first experimenter to notice that transmission during daylight hours was more prone to noise than at night, which was later explained by Heaviside as due to the "Marconisphere" (now known as the ionosphere). Approximately 350 civilian Marconi wireless operators were killed at sea during the first World War, as the wireless shed was a crucial target for maritime marauders. Although Marconi was the singular force behind long distance wireless communications, he admitted he didn't really know how it all worked. Some years later the scientific community discovered that Marconi's idea that longer wavelengths would travel farther around the globe was incorrect, and Marconi's amazing 300,000 watt steam-powered spark gap transmitters, building-sized capacitor banks and multi-mile antenna elements were unnecessary at higher frequencies (short waves). Marconi died in 1937, to learn more about his life and that of murderer Harvey Crippen, go to our book page and order Thunderstruck. Marconi's company has long since has been chopped up and digested into BAE and Ericsson among others.
By 1894, Sir Oliver George was conducting experiments noting that directional radiation was obtained when he surrounded a spark oscillator with a metal tube. In 1897, Lord Rayleigh (John William Strutt) proved mathematically that waves could be propagated inside a hollow metal tube. Rayleigh also noted the infinite set of modes of the TE or TM type which were possible, and the existence of a cutoff frequency. Waveguide was essentially forgotten, however, until it was rediscovered independently in 1936 by George C. Southworth at AT&T (Bell Telephone Labs) and W.L. Barrow at MIT.
Up until this point, focus had been on sending and receiving communication signals. As the new century progressed, scientists worked with longer and longer wavelengths to achieve greater and greater distances.
As radio applications grew more sophisticated (and popular), stations started broadcasting regular commercial programs. By 1920, the US Department of Commerce stepped in and began issuing radio licenses, and in 1921 formally declared a special service category (and corresponding transmission wavelength) for commercial stations.
Want more? Check out the next room in the Microwave Hall of Fame!
Want to nominate someone for the Microwave Hall of Fame? Drop us a line!
Microwave Hall of Fame
Part I
Updated July 5, 2011
Isn't about time that the word "Hall of Fame" gets applied to people that actually contributed something to society, rather than overpaid people that do nothing but sing or play ball? Here's an introduction to some of the innovators upon whose broad shoulders you stand when you work in the microwave industry: famous engineers, mathematicians and scientists that provided the foundations for the microwave industry.If you want to nominate a Microwave God to this humble hall of fame, send info to Microwaves101.com and you will win a free pen knife if he (or perhaps she?) makes the cut. There is room for an unlimited number of inductees, so start shooting them in. No microwave managers please!
On this page, you'll find the classics--most of these guys you should know for their contributions to electrical engineering as a whole. History-makers around WWII have their own page, and modern-day geniuses now have a page to call their own. Check them all out!
Go on to the second page of the Microwave Hall of Fame.
Go on to the third page of the Microwave Hall of Fame.
Go to our main microwave history page.
Long before any study of microwaves occurred, Scotsman John Napier, born in 1550, developed the theory of logarithms, in order to eliminate the frustration of hand calculations of division, multiplication, squares, etc. We use logarithms every day in microwaves when we refer to the decibel. His "numbering rods", constructed of ivory, became known as "Napier's Bones", and comprised the world's first slide rule. Some of his neighbors suggested that he was in league with the powers of darkness... a trait that has often been associated with successful microwave engineering! The Neper, a unitless quantity for dealing with ratios, is named after John Napier.
Microwave antennas often use a Cassegrain reflector. Not much is known about Laurent Cassegrain, a Catholic Priest in Chartre, France, who in 1672 reportedly submitted a manuscript on a new type of reflecting telescope that bears his name. The key features are a secondary convex mirror suspended above the primary concave mirror, that focusses light into the eyepiece which is located in a hole in the primary mirror. The Cassegrain antenna is an an adaptation of the telescope.
Lazzaro Spallanzani, born in 1727 in Italy, had a huge influence on many of the physical sciences, which is even more remarkable because he was an ordained Jesuit priest. Here in the Microwave Hall of fame, Spallanzani is remembered because his Lettere sul volo dei pipistrelli acciecati, published in 1794, recorded correspondence about his experiments on the remarkable sense of direction of bats. Bats use sonar to move about in the dark, which some might argue was the inspiration for radar.
Hans Christian Oersted was born in 1777 in Denmark, and was a lifelong academic specializing in the physical sciences, as well as an amateur philosopher, a follower of Kant. Oersted's discovery in 1820 that an electric current would deflect a compass needle was the first proof that electricity and magnetism are like beautiful twin sisters Mary-Kate and Ashley Olson, irresistible to engineers, and always touching each other! The unit of magnetic field strength was named the Oersted in his honor. One of Denmark's greatest thinkers, Oersted founded the Polytechnical Institute in Copenhagen in 1829, which is now known as the Technical University of Denmark.
Also born in 1777 was Johann Carl Friedrich Gauss. Born in Braunschweig, Germany, Gauss is regarded by many as the most prominent mathematicianever. His numbers work is too numerous to even be listed here and much of it seems esoteric to engineers, such as his solution to circumscribing a 17-sided polygon inside a circle. (This is what he wanted on his grave stone)! He also proved that any integer can be expressed as the sum of no more that three triangular numbers, not something that you might use ever day. His name is used every day in discussions of probability theory (Gaussian distribution). He also was a major contributor to physical sciences, inventing the heliotrope (for measuring long distances using sunlight) and developed accurate methods for measuring terrestrial magnetism. He helped install a telegraph system in Europe, at the same time accomplished painter Samuel Morse was working on his system in the United States. Let's not forget Maxwell's equations includes two that are derived from Gauss (magnetic and electric induction). The CGS unit of electromagnetic induction is the "Gauss", in his honor. Gauss died in 1855.
|
"the method of, and apparatus for, transmitting vocal or other sounds telegraphically… by causing electrical undulations, similar in form to the vibrations of the air accompanying the said vocal or other sound." Three weeks later Alexander Graham Bell's famous sentence, "Watson, I want to see you", was spoken into the first telephone. The same month, Custer's army became human pincushions. Bell was born a Scot in 1847 and came to the "New World" by way of Canada, later settling in Boston. His portfolio of inventions is second to none, but his life's work was mainly centered on helping the deaf. The term bel (and decibel) was named by Bell Labs scientists to honor him. Bell thought the phone was too great a distraction, and refused to permit one in his study! Bell died in 1922. | |
Charles Proteus Steinmetz in his cabin near Schenectady. Looks like the museum incorrectly painted the replica table white! Steinmetz was a socialist, which is what brought him to the United States (he had to flee Germany after writing political essays). He was also an environmentalist, an anti-racist, a protagonist of electric cars to reduce pollution, and a big fan of cigars. He preferred to live in a camp near General Electric's Schenectady plant, using a canoe as his fair-weather office. He had 200 US patents. | |
|
| |
|
|
| Brian wishes to point out that Fessenden, Tesla, Charles Steinmetz and Ernst Alexanderson all worked for Edison. Is the top genius the one who can make business out of the genius of others? How many similar genius’s worked for Bill Gates and helped him make his billions and whom we will only hear about 100 years from now if ever? |
| |
Lee de Forest |
|
|
Watch David Bowie play Tesla in the movie The Prestige! | |
Up until this point, focus had been on sending and receiving communication signals. As the new century progressed, scientists worked with longer and longer wavelengths to achieve greater and greater distances.
| |
|
| |
|
| |
| |
Want more? Check out the next room in the Microwave Hall of Fame!
Want to nominate someone for the Microwave Hall of Fame? Drop us a line!
Assinar:
Postagens (Atom)